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Abstract— Mesh networks are based on Wireless Mesh
Routers (WMRs) that interconnect themselves to form a
wireless back-haul able to route traffic from/to end-users.
The behavior of radio interfaces used by WMRs has a deep
impact on network performance. Various recent wireless
technologies are able to perform transmission at multiple
different rates, depending on channel condition. How to
effectively use this new multi-rate enhancement, in multi-
hop mesh networks, is still an open issue.

In this paper we present a simulation case study that
highlights the impact of different rate-adaptation mecha-
nisms, at Transport layer, in terms of throughput and end-
to-end delay. In particular we compare MAC-embedded
rate adaptation mechanism vs. rate-aware routing and how
they behave in both congested and not congested networks.
Results lead us to argue that using of shorter high rate
links does not degrade end-to-end delay, even in congested
condition, while preserving throughput capacity.

Index Terms— Rate Adaptation Algorithms, Cross-
Layer, Mesh Networks, Rate-aware Routing.

I. INTRODUCTION

Wireless Mesh Networks (WMNs) are an emerging
technology based on a two layer architecture. The first
level of the architecture consists of Wireless Mesh
Routers (WMRs), which interconnect themselves in or-
der to form a meshed wireless back-haul. The second
level of the architecture consists of end-user terminals,
which communicate by means of the WMRs’ back-haul.
Each WMR covers a region where it offers connectivity
by acting as an Access Point. End-users do not need
to embed any routing feature since routing is performed
exclusively between WMRs.

The behavior of radio interfaces used by WMRs to
communicate and to create a wireless back-haul has a
deep impact on performances. Various recent wireless
technologies, like IEEE 802.11 a/b/g and WiMax, are
based on interfaces able to perform transmissions at
multiple different rates, according to channel conditions.
Data rates higher than the base rate, which is also
the lowest, are possible when the signal to noise ratio

(SNR) is above a certain threshold. Each transmission
rate has a different threshold: the higher the rate, the
higher the threshold. This is due to the modulation
schemes used in higher rates, which are more sensitive
to noise and interference. As a side effect, due to
these different thresholds, each rate has also a different
transmission range (assuming fixed transmission power):
the higher the rate, the smaller the transmission range.

How to effectively use this new multi-rate enhance-
ment in multi-hop mesh networks is still an open issue.
When multi-rate capability was introduced in radio inter-
faces, the first approach in implementing rate adaptation
algorithms was in the respect of the protocol stack
layering, as defined by the OSI model. Thus, algorithms
like Auto Rate Fallback (ARF) were implemented in
the MAC layer, i.e. in the driver of the wireless cards.
While such a solution may have acceptable performance
in centralized architectures, like WLANs, we argue that
maintaining the rate adaptation mechanism encapsulated
in the MAC layer is not an optimal solution for multi-
hop mesh networks.

Recently, the research community has started to look
at other approaches. One of them consists in improving
routing protocols to be rate-aware, i.e. able to find path
with high transmission rate at each hop. Such a cross-
layer approach may overcome some issues concerning
rate adaptation mechanism. Nevertheless, with this kind
of approach, another concern arises: if only high-rate
links are used, the number of hops necessary to reach
a destination is increased, since the transmission rate is
smaller, what is the impact on the end-to-end delay? Can
we dare to ask if end-to-end can be reduced by a rate-
aware multi-hop solution?

In this paper we present, and explore by simulation,
some mechanisms that perform rate adaptation, focusing
on throughput and delay at Transport level. We limit
our work to IEEE 802.11b [1] based WMNs, however,
since this kind of radio interface is a consolidate stan-
dard and the most widely used, our results still have
a large and general interest. Usually, papers focusing
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on rate adaptation algorithm explore only MAC-related
issues, not worrying about upper layers. On the other
hand, papers that present rate-aware routing algorithms
compare them to other routing algorithm and do not care
about MAC layer and rate adaptation algorithm. Here
we propose a simple simulation case study, having a
cross layer eye looking what is the effect at Transport
layer (UDP/TCP) of different rate adaptation approaches,
placed on different layers.

In the next section we present the basic rate adaptation
solutions for 802.11, i.e. Auto Rate Fallback (ARF) and
Receiver Based Auto Rate (RBAR). While the first has
been implemented in commercial products, the second
remained only a theoretic approach, which we describe
in order to give a complete overview of the most
important algorithms at MAC level. Then, in section
III we take a look in to the real world, presenting the
rate adaptation mechanism implemented in the drivers of
Atheros chipset based wireless cards, which are widely
used. In section IV we introduce a simple rate-aware
routing approach. It is out of the scope of this paper to
present a brand new rate-aware routing protocol. We just
implemented the simplest solution in order to show how
different its behavior is compared to MAC-embedded
solutions. The results of simulations we performed are
presented in section VI, putting in evidence how different
solutions have opposite and interesting behaviors. In
section VII we conclude the paper with some final
remarks.

II. RATE ADAPTATION SOLUTIONS FOR 802.11

In the following subsections, we present the two
most important rate adaptation algorithms proposed for
802.11: the ARF and the RBAR. ARF was the first
published and commercially implemented rate adaptation
algorithm, thus it is also the most studied. RBAR is the
algorithm that the literature points as the most effective;
however, it remains a theoretic approach because of the
need of some modifications in the actual standard.

A. ARF

The original goal of ARF [2] was to optimize the
application throughput in WaveLan II devices, which
implemented the 802.11b DSSS standard. In WaveLan II
there were only two possible rates: 1 and 2 Mbps. Since
then, technology has evolved and 802.11b now attains 11
Mbps, while 802.11 a/g go up to 54 Mbps. Nevertheless,
ARF is a general approach and can be implemented on
all the different flavors of 802.11.

In ARF, each sender attempts to increase the trans-
mission rate after certain number of successful transmis-
sions, which have occurred at a given rate. If more than

one failure occurs at current rate the algorithm imposes a
fallback to a lower rate. At the same time a timer is set.
Whether the timer expires or the number of successful
transmissions reaches a threshold, the transmission rate
is increased to a higher rate and the timer is reset. When
the rate is increased, the first transmission is a probe, if
transmission fails the rate is immediately decreased and
the timer restarted.

Fig. 1 shows the state machine associated with the
Auto Rate Fallback algorithm. The state machine shows
how starting from the Default Rate (DR), the fallback to
the Fallback Rate (FR) is triggered by the loss of one
or more ACKs, depending of the actual state. Return to
DR is controlled by the number of successfully received
acknowledgements or by the expiration of the timer. In
the Normal Operation state, the host transmits with the
highest transmission rate (e.g. 11 Mbps in 802.11b). As
long as messages are acknowledged, transmitter stays in
this state. If an ACK is missed, the Retransmitting state is
entered; however, transmission is still done at the same
rate. If a second ACK is missed the Fallback state is
entered. As already mentioned, if the associated timer
expires or the correct amount of consecutive successful
transmissions is reached the Probation state is entered,
in order to probe a higher transmission rate. In the
other case, if two consecutive ACKs are missed, while
in the Fallback state, the transmission rate is lowered
again. This is done by transiting through the Fallback
Retransmit state.

The ARF algorithm suffers from a certain number of
problems:

• In ad-hoc networks, where channel condition vari-
ability gets worse due to mobility of hosts, ARF
hardly founds a stable state.

• In static condition, the algorithm will periodically
try to increase the transmission rate. Since usually it
is done every 10 successful transmissions; the result
is the introduction of useless retransmission attempt
that lowers the application level throughput.

• In Ad-hoc and Mesh networks, since different
neighbors may be able to listen to the transmitter
at different rates, ARF is not able to find a stable
state.

The last drawback of the previous list is common in
most rate adaptation algorithms. Typically those algo-
rithms, like ARF, are designed to work well on interfaces
set in infrastructure mode. In infrastructure mode all
traffic goes through the Access Point (AP), thus, since
the next-hop is fix (the AP), ARF and similar algorithms
can find a stable state. In multi-hop mesh networks the
next hop is not fixed. A node, may have two differ-
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Fig. 1. Auto Rate Fallback algorithm state machine. The content of squared brackets expresses a condition. Squared brackets followed by
a slash correspond to the statement if ... then.

ent consecutive packets for two different destinations,
thus to transmit toward two different next-hops, with
different rates. This prevents monolithic rate adaptation
algorithms that do not consider who is the next hop from
finding a stable state.

B. RBAR

The RBAR algorithm [3], like ARF, focuses on op-
timizing the application throughput. This algorithm re-
quires important modifications in the actual IEEE 802.11
MAC standard. This explains why, despite the interesting
performance it achieves when simulated, it has never
been really implemented. The RBAR design, however,
supports next-hop changes on a per-packet basis, since
it is the receiver that decides the transmission rate of
the data packet. This is done in the RTS/CTS (Request
To Send/Clear To Send) handshake, which precedes the
data packet transmission. Thus the RTS/CTS mechanism
becomes mandatory.1 The algorithm relies on the intro-
duction of some new header fields in both control and
data frames and it works in the following manner:

• The sender chooses a data rate based on a heuristic,
such the most recent rate that was successful for
transmission toward the destination, stores the rate
and the data packet size in the outgoing RTS.

• The receiver, based on the information stored in the
RTS and the channel conditions (i.e. the SNR),
selects the appropriate rate and store it, along with
the packet size, in the CTS sent back to the sender.

1For further information about this kind of handshake refer to [1].

• Neighbors nodes that overhear the RTS/CTS hand-
shake can update their NAV (Network Alloca-
tion Vector) to reflect the channel reservation
sender/receiver have made.

• The sender transmits the data packet at the rate
chosen by the receiver. The channel reservation is
confirmed by adding a Reservation SubHeader in
the data packet.

Compared to ARF, RBAR has the advantage to give very
good performances, in the context of mesh networks,
since it is the next hop that chooses the transmission rate.
Nevertheless, RBAR presents also some disadvantages.
The mandate of using RTS/CTS, also for very small
packets, increases the overhead. The introduction of
new header fields makes RBAR incompatible with the
original standard.

III. RATE CONTROL IN ATHEROS CHIPSET BASED

CARDS

In the last couple of years, Atheros AR5212 [4]
chipset based 802.11 wireless cards have become very
popular.2 Atheros chipset embeds very simple MAC
controllers. As a consequence the driver of this kind of
chipset has to implement a part of the MAC function-
alities, like the rate adaptation mechanism. On Linux
and BSD systems, the Atheros driver is based on a
binary-only Hardware Abstraction Layer (HAL), which

2This chipset is not present on Intel Centrino and Cisco Aironet
solutions, which are based on proprietary hardware. Both products
implement a mechanism called, by the manufacturers, Auto Rate,
however, no details about the algorithm are available.
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hides some hardware specific features, offering a simpler
interface to higher levels.

The HAL allows up to 9 FIFO descriptors queues,
in order to schedule packets for transmission. Each
descriptor contains all the 802.11 specific information,
needed to transmit the packet. In particular, there are 4
pairs of rate/counter fields (Ratei/Counteri; i = 0..3).
When the wireless medium is available, the descrip-
tor at the head of the FIFO queue and its relative
data packet are transferred from the system memory
to the device memory. The first transmission attempt
is done using rate Rate0. If transmission fails, re-
transmission occurs at the same rate, up to Counter0

retries. If transmission still fails, the device tries to
transmit at rate Rate1 up to Counter1 times, then
the rate Rate2 for Counter2 times and finally rate
Rate3 for Counter3 times. If transmission fails for
Counter0 + Counter1 + Counter2 + Counter3 times
in a row, the device gives up transmitting, updates the
descriptor and send it back to the system memory.

Whenever a transmission is completed or abandoned,
the descriptor is sent back to the system with some statis-
tics, like the number of missed ACKs. This particular
information indicates also the rate at which the packet
has been sent. For example, if the transmission succeeds
at the first attempt, the number of missed ACKs is 0,
which means the packet has been transmitted at rate
Rate0. If Counter0 = 2 and Counter1 = 2 and the
number of missed ACKs is 3, this means that the packet
was sent with rate equal to Rate1.

The main idea behind this approach is that short-
term variations of the channel conditions can be han-
dled by the four Rate/Counter pairs, while long-term
variations can be handled by changing the four pairs
Rate/Counter. The second task is usually done by
a module that regularly updates them, based on the
statistics returned by the Atheros device. Two algorithms
are implemented by now in the Atheros driver present on
Linux and BSD systems ([5], [6]). The ONOE algorithm,
whose name is due to its creator Atsushi Onoe, and the
AMRR (Adaptive Multi Rate Retry) proposed by the
INRIA Research Center in Sophia-Antipolis (France).
In the next two subsections we briefly describe both
algorithms.

A. The ONOE Algorithm

The ONOE algorithm is based on a rate controller,
which runs periodically and analyzes transmission statis-
tics for each neighbor/AP. If transmissions look to be
working well over a sampling period, the rate controller
gives a raise rate credit. Otherwise, if transmissions

look to be not working well, a credit is subtracted.
Once credits reach a threshold the transmit rate is raised.
Various error conditions may force the transmission rate
to be dropped. The decision to add or subtract a credit
is based on the errors and retries accumulated over
the sampling period. Usually the counters are set as
follows: Counter0 = 4; Counter1 = 2; Counter2 = 2;
Counter3 = 2.

Since IEEE 802.11b has only 4 rates available, the
ONOE algorithm starts always with the highest rate
negotiated. In 802.11 a/g instead, where more possible
transmission rates are available, the algorithm usually
starts in the middle, choosing 24Mbps or 36Mbps rate.
Note that the ONOE algorithm is not far from the ARF
algorithm. Enhancements consist in the customization for
the Atheros chipset and in maintaining separate statistics
for each neighbor.

B. The AMRR Algorithm

The main difference between the ONOE algorithm
and the AMRR one is the way Rate/Counter pairs
are updated. AMRR sets counters as: Counter0 =

Counter1 = Counter2 = Counter3 = 1, in order
to react rapidly to short-term variations of the wireless
medium. The rate Rate3 is always chosen as the lowest
rate available (e.g. 1 Mbps in 802.11b and 6 Mbps in
802.11a).

A binary exponential backoff algorithm is used in
order to change the set of rates in the Rate/Counter
pairs. If the number of packet loss in the previous
period is less than 10% and the number of different
packet transmission attempts is higher than a threshold,
the set of rates are increased and the threshold reset
to its minimum value. If, instead, more than 33% of
packets transmissions failed during the previous period,
the threshold doubles. If neither of the two cases occurs
the set of rates remains unchanged.

Further details about this algorithm are given [7],
where authors also show how this algorithm may im-
prove performances compared to other existing solutions.

IV. CROSS-LAYER ROUTING

Cross-layer rate-aware routing protocols are not new
in wireless networks. In [8], [9] [10] there are some
interesting works on the subject. The only work focusing
on the effects of multi-rate in ad-hoc networks is [11].
Nevertheless, as in the other cited works, authors explore
only throughput aspects. In this paper, we do not propose
any new routing algorithm; we just define a simple rate-
aware metric in order to implement a simple routing
protocol. Our purpose is to show the effects, in terms of
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TABLE I

WIRELESS CARD CHARACTERISTICS

Rate and corresponding Sensitivity
11 Mbps -83 dBm
5.5 Mbps -89 dBm
2 Mbps -91 dBm
1 Mbps -94 dBm

both delay and throughput, of integrating rate adaptation
algorithm and routing protocol.

In our simple implementation, the cost Cij of a link
lij between node i and node j is defined as:

Cij =
1

Rij

, (1)

where Rij is the highest rate that can be used on the
link. The cost of a path is defined as:

CPath = max
∀lij∈Path

Cij . (2)

Roughly, the cost in equation 2 defines the bottleneck
link of the path in terms of rate. The key point in this
kind of approach is how to implement the cross-layer
solution needed to give to the routing layer the awareness
of rates that can be used toward each neighbor. A simple
solution would be, for example in a BSD system with
ONOE algorithm, to allow the routing demon to access
the driver statistics tables. Each time the ONOE rate
controller runs and modifies a < Neighbor,Rate >
pair, the event should be reported to the routing demon,
which should update link costs and the routing table
if necessary. We have successfully implemented this
routing algorithm on NS-2, by modifying the DSDV
Agent, which is the equivalent of a DSDV routing demon
of a real system.

V. NS-2 ENHANCEMENT

Before starting the analysis of the results we obtained,
we give here few remarks on the work done in order to
perform correct simulations. The Network Simulator NS-
2 [12], version 2.26, has been used in our tests. NS-2 is
a widely used, open source simulator that offers a built-
in 802.11 MAC layer implementation, which, however,
suffers from some lacks and uncorrectness. Indeed, the
radio interface model of NS-2 is still based on old
WaveLAN II cards, thus lacking of correct support for
rates higher than 2 Mbps. We enhanced the MAC to
support multi-rate transmissions as defined in standard
802.11b. We set the interface parameters to model fea-
tures of the most common wireless cards, summarized
in table I. The different level of sensitivity for each
transmission rate gives them a different transmission

Sink4

1Mbps

2Mbps

5.5Mbps

11Mbps

Source

Sink1

Sink2

Sink3

Fig. 2. Simple 5-nodes topology.

range. With these modifications, the radio interface on
NS-2 is closer to real 802.11b wireless cards.

Further, NS-2 does not support natively any rate
adaptation algorithm. We first implemented the ARF
algorithm in the MAC layer of the simulator, following
the state machine described in fig. 1. Based on the code
produced to implement ARF, we developed the ONOE
algorithm. The modifications made to ARF are basically
to collect different statistics for each neighbor. The
implementation of the routing approach needed more
coding work. The rate adaptation mechanism has been
included in a routing agent implemented starting from
the DSDV agent, which is part of the NS-2 distribution.
The resulting routing agent is rate-aware, thus it can
implement the simple rate-metric presented in section
IV.

VI. SIMULATION ANALYSIS

We propose here the analysis of ARF, ONOE, and
rate-aware routing rate adaptation algorithms. First we
performed the analysis on a simple 5-nodes scenario
(see fig. 2), with heavy traffic condition. Despite of its
simplicity, this topology well exploits issues related to
rate adaptation in mesh networks. Then, while discussing
the results obtained, we will explain them by analyzing
the same algorithms, still on the 5-nodes topology, but
in light traffic condition. Finally we compare ARF and
the routing approach on a larger topology, in order to
find some general conclusions.

A. 5-nodes Topology in heavy traffic condition

In the 5-nodes topology of fig. 2 there is one single
source that generates traffic toward the other four nodes,
which act as sinks. As the figure shows, sinks are
placed at different distances from source in order to have
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Fig. 3. ARF throughput in heavy traffic condition.

different maximum transmission rates achievable. At the
same time, the distance between each pair of successive
sinks < Sinki, Sinki+1 > is tailored to have 11 Mbps
maximum transmission rate on the corresponding link.
Our topology is the worse multi-hop case when using
only 11 Mbps links. Indeed, if for example we add a node
between the Source and Sink4, distance would let the
two nodes send traffic to each other, at 11 Mbps, through
the new node, thus with only 1 hop. In our topology,
instead, if the Source and Sink4 wish to send traffic to
each other at 11 Mbps, they are forced to pass through
Sink1, Sink2, and Sink3, thus having 3 hops.

On the source node there are 4 UDP Constant Bit
Rate (CBR) traffic generators, one for each possible sink.
Each CBR generates packets of 1500 bytes at a constant
rate. To simulate a heavy traffic condition, CBRs send a
packet each 6.5 msec. In this way the output queue of
the source node, with 50 packets size, is never empty.
The measured delay in this case is shaped by the time
the packet spends in the output queue. Each simulation
run lasts 300 seconds of simulated time, with traffic
starting after 10 seconds, in order to give the network
the possibility to get stable when the routing agent is
used.

1) ARF Simulation: The behavior of ARF, in terms
of throughput, in the case of heavy loaded network, is
depicted in fig. 3. The throughput is sampled at regular
intervals of one second, taking in to account only packets
correctly received by the intended sink. No routing agent
is used during simulation of ARF, thus the Source tries
to talk directly to each sink. As can be remarked, the
throughput is highly variable. The cause of this behavior
is the ARF that does not separate statistics based on the
next-hop. If, for instance, the source sends a burst of
successfully delivered packets to Sink1, its ARF may
decide that the best rate to use to send packets is 11
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Fig. 4. Delay in heavy traffic condition, expressed in milliseconds,
for each received packet when ARF is used.

Mbps. If the next packet must be delivered to Sink4, the
MAC layer will waste time in several retransmissions
before reaching the transmission rate of 1 Mbps that
is the only one Sink4 is able to correctly decode. In
other words, since the intended next-hop may change
for different packets, the ARF is not able to get stable.
The instability of the ARF in mesh networks can be also
observed in fig. 4. In this figure the y-axis represents
the delays, in milliseconds, of each successive packet
correctly received (x-axis). The figure is composed by
four graphs, one for each sink. When necessary a zoom
picture has been added, to better show the behavior of the
related sink. The delay has big fluctuations for all sinks;
up to 600 msec. We can also observe the difference of
received packets, due to the different transmission rate.
While Sink4 receives only around 1200 packets, Sink1

receives more than 35000.
2) ONOE Simulation: The ONOE algorithm has been

simulated in the same conditions as ARF. In this case,
no routing agent is necessary either, since source will
send packets directly to each intended sink. Collecting
statistics for each neighbor eliminates the major draw-
back of ARF. Transmission rate is now triggered on
the intended next-hop. Even if the next-hop changes
on a per-packet basis, this approach avoids a lot of
retransmissions improving stability, as fig. 5 shows. We
can remark that throughput shape is more stable for
all sinks. The aggregate throughput, i.e. the sum of the
throughput toward each sink, is also improved, with an
average above 3.5 Mbps, while ARF rarely achieved a
throughput of 3.3 Mbps. The same stability behavior
can be observed for the delay in fig. 6. This time, the
average delay is always lower than 200 msec. There
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Fig. 6. Delay in heavy traffic condition, expressed in milliseconds,
for each received packet when ONOE is used.

is also an increase in the number of packets correctly
received, almost double for Sink4, and around 42000
for Sink1. Once again the different transmission time
for the different rates plays a key role on the number of
packets that can be delivered correctly in a fixed time
window (300 sec simulated time in our case).

3) Routing Approach Simulation: Finally, let us take
a look to the results of the rate-aware routing approach.
As already stated, we placed sinks in such a way to
have 11 Mbps links between them. Our routing agent
correctly finds highest rate paths, from Source to each
sink, which are:

Sink1 Source→Sink1;
Sink2 Source→Sink1→Sink2;
Sink3 Source→Sink1→Sink2→Sink3;
Sink4 Source→Sink1→Sink2→Sink3→Sink4.

Since transmission statistics are collected on a per-
neighbor basis, the routing solution presents the same
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Fig. 8. Delay in heavy traffic condition, expressed in milliseconds,
for each received packet when the routing approach is used.

stability behavior as ONOE. All transmission are now
performed at 11 Mbps, thus the aggregate throughput is
improved, reaching almost 4 Mbps, as shown in fig. 7.
Of course, the number of collisions is increased, since
performing multi-hop means that more than one node
wish to access the channel. Nevertheless, this drawback
is largely overcome by the gain in terms of reduced trans-
mission time, which in turns increases global throughput.
It is interesting to remark the results concerning the
delay, showed in fig. 8. The number of delivered packets
is increased compared to both ARF and ONOE, even
if there is not a large gain versus ONOE. The delay
variation is reduced; indeed the plot is thinner, while the
average is the same as for ONOE. The last point seems
to go against the common intuition that since the routing
approach increases the number of hops, the end-to-end
delay is increased. The main reason for this behavior
is that the latency of packets in the output queue of
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TABLE II

NUMBER OF DELIVERED PACKETS IN HEAVY TRAFFIC CONDITION

Sink ARFB ONOE Routing
Sink1 35672 42114 42362
Sink2 21932 28381 31991
Sink3 7106 17217 17276
Sink4 1210 2034 2803

the Source is far higher than the time needed to reach
the destination and this latency shapes the delay. Further
details are given in the next section.

B. 5-nodes Topology in light traffic condition

What comes out from the simulation study we per-
formed in the previous section is that enhancing the rout-
ing layer by rate-awareness seems to give a gain in terms
of throughput. The reason is that the routing approach is
able to deliver a higher quantity of packets compared
to MAC layer encapsulated approaches, as shown in
table II. The routing approach exceeds (slightly) ONOE
which in turns exceeds ARF. Compared to ARF, ONOE
is able to deliver more packets, in the time window we
simulated, because it collects statistics on a per-neighbor
basis. This saves retransmissions, needed to adapt the
rate, which instead occurs in ARF when the next-hop of
two successive packets changes. The routing approach
increases the number of delivered packets, compared to
ONOE, because all transmissions are shorter, since only
11 Mbps links, through multi-hop, are used. In heavy
traffic condition, ONOE greatly stabilizes performance,
and slightly reduces the average delay, compared to ARF.
This result is due, again, to the reduced number of
retransmissions that occur when ONOE is used instead
of ARF. The routing approach, compared to ONOE,
reduces even more the delay fluctuations. The reason
of these achievements is that, with the routing approach,
all packets that are in the output queue have the same
transmission time. What remains variable is the channel
access time, which depends on the random backoff
mechanism of the MAC layer.

Based on the above considerations, we performed
simulation in light traffic condition in order to put
in evidence the transmission time of the packets in
each approach. In this the second type of simulation,
CBRs generate a packet every 250 msec (i.e. 4 pack-
ets/second/CBR). Opposite to the first case, this time
the output queue is always empty when a packet is
generated. The measured delay in this case is shaped
by the transmission time and the latency of the packet
when traversing the layers of the protocol stack at each
hop. The results are shown in fig. 9, where there is the
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Fig. 9. Delay in light traffic condition, expressed in milliseconds,
for each received packet, for all proposed solutions.

plot of the end-to-end delay of all delivered packet, for
all the proposed approaches. Plotting the throughput is
useless because the traffic produced by the four CBRs
is far lower than the network throughput capacity.

Sending a packet to Sink4 in the case of ARF, the
end-to-end delay is more than three times the end-to-end
delay when using the routing approach. The high latency
of ARF is justified by the fact that some retransmissions
occur before ARF finds the correct transmission rate.
Moreover, these retransmissions increase the contention
window of the backoff mechanism, deteriorating even
more the performances. Note that the fact that in fig.
9 the plot of Sink2 and Sink3 almost totally overlap
is due to a synchronization phenomenon occurring with
CBR traffic generators. A zoom has been added to the
picture in order to show the difference. The reason of
this behavior is that in light traffic conditions packets are
always sent in the same cyclic sequence. Meaning that,
also the transitions in the ARF state machine are cyclic.
The total time spent in retransmissions to find the right
rate and the time spent in the successful transmission is
the same for both sinks.

ONOE reduces some part of latency due to retransmis-
sions, maintaining also a smaller contention window. Yet,
slow transmissions do not allow ONOE to achieve low
delay like in the routing case. The delay when sending
packets toward Sink4 remains higher than 12 msec. For
Sink1 and Sink2, the delay is the same as for the routing
approach. For Sink1 the explanation is trivial, the delay
is due only to channel access time and transmission time,
which in both cases is the same. For Sink2, the reason
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of having the same delay is that ONOE transmits at 5.5
Mbps, while the routing approach transmits two times at
11 Mbps, in order to reach Sink2. This makes an average
transmission rate of 5.5 Mbps with some overhead added
due to the forwarding operation.

The rate-aware routing approach presents the most
linear behavior. Due to the absence of other traffic, the
end-to-end delay is just the sum of the time need to
reach each hop, no queuing time is present. In particular,
to reach Sink4 the delay results lower then the delay
experienced when transmitting directly at 1 Mbps as in
the case of ONOE.

C. Random Topology

Insofar, we analyzed the relation between rate adapta-
tion mechanism and end-to-end delay in a simple 5 nodes
topology. Results suggest that performing multi-hop, by
using a rate-aware routing approach, may reduce, or at
least not deteriorate the performances. What seems to
come out is that rate-aware routing is the best solution
in light traffic condition, while in heavy traffic condition
ONOE and rate-aware routing are equivalent, while ARF
performs the worst in all cases. Due to the simple
topology we used, this conclusion cannot be assumed
as a general behavior of multi-rate mesh networks.

To go deeper in the analysis, looking at what happens
in a more general topology, with different traffic loads,
we simulated a random topology of 52 nodes in an area
of 2000x2000 meters. We fixed our attention on one
single flow; we call this the sample flow. Besides, other
flows are also generated, for different source/destination
pairs and the traffic injected by each flow is also varied.
The goal is to better highlight what happens to a flow,
in terms of delay, when congestion of the network (i.e.
flow numbers, traffic load per flow) changes. Flows
consist of UDP packets generated by a CBR source,
all with the same size of 1500 bytes. We performed
several simulation runs, changing at each run the packet
interval time, in order to change the traffic load. The
smaller the packet interval time, the higher the traffic
load. We first observed the sample flow alone and then
we added more flows. Each time a flow is added, we
measured the delay for the whole set of packet interval
time. Fig. 10 and fig. 11 show the delay of the sample
flow for, respectively, ARF and rate-aware routing. In
the case of ARF, we used AODV as a routing protocol.

For ARF, the sample flow has a low (less than 100
msec) and stable delay when it is alone, or with only one
more flow. When more than one flow are added, the delay
becomes more variable and when the packet interval
time falls under 0.1 msec, it explodes to very high
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Fig. 11. Average delay when rate-aware routing approach is used.
Since the behavior of the delay is very stable, we put a double zoom in
the figure: one to highlight the saturation points and one to highlight
the difference between delays when other flows are in the network.

values. We say that for each curve there is a saturation
point. The lower the number of flows present in the
network, the lower the packet interval time that saturate
the network. Note, that also in the case of a single flow
beside the sample flow, or the sample flow alone, there
is a saturation point, but in both cases it falls out of the
range of packet interval time showed in fig. 10.

Saturation occurs because the number of packets
generated becomes far higher then the capacity of the
network. Thus output queues fill up, while the MAC
layer spends a lot of time in retransmissions due to
collisions and contention of the channel. Since we used
UDP traffic coupled with drop tail output queues, below
the saturation point the delay may reach values of several
seconds. In the case of rate-aware routing approach, the
delay has lower values, up to 20 times lower than ARF,
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and a more stable behavior. The saturation points, in
this case, have values lower than 0.05 msec when 2 to
4 flows are present in the network. The other cases have
a saturation point that is out of the range of fig. 11.

The reason of this large gain of the rate aware ap-
proach can be found in [13], where Lundgren et al.
first observed the phenomena of gray-zones. Nodes in
a gray-zone can be sensed by HELLO messages, which
are sent at low rates, but cannot reliably exchange
data traffic at higher rates. An example is Sink4 in
the 5 nodes topology. As the density of the network
increases, normal multi-hop routing protocols, which are
based on the shortest path metric in a hop sense, are
more likely to choose nodes that are in a gray-zone.
This is exactly what happens in our random topology,
where, in order to relay packets, AODV chooses more
easily nodes that are in a gray-zone. ARF and shortest
hop path routing protocol have a very bad interaction,
thus high delay values also when the network is under
relatively light traffic condition. The rate-aware approach
instead, selectively chose next-hops that are not in a
gray-zone, thus able to exchange data at high rates.
Due to space constrains, we do not show results for
the ONOE algorithm. Nevertheless, ONOE shows only a
more stable behavior, compared to ARF, since the gray-
zones phenomenon limits its performances as well.

VII. CONCLUSION

We presented in this paper a simulation case study
concerning the improvements that a rate-aware routing
protocol may achieve in terms of throughput and end-to-
end delay in wireless mesh networks. Our case study first
focused on a simple 5-nodes topology, in order to well
understand the behavior of the ARF and the ONOE rate
adaptation algorithms and a simple rate-aware routing
approach. While the first two solutions are placed at
MAC layer, the rate-aware routing solution is a cross-
layer approach, since low level statistics are brought to
the routing layer in order to make path construction. This
first analysis has shown that using a rate-aware routing
approach, may reduce, or at least not deteriorate the end-
to-end delay, while giving small throughput gain.

Then we moved to a more general topology, fixing our
observation on a single flow while varying the traffic
condition of the network. Once again the rate-aware
routing approach outperforms the other approaches. The
bad performance of ARF and ONOE are found in the
high latency to find right transmission rate at MAC level
and the presence of the gray-zones phenomena. This
is overcome by coupling rate adaptation and routing
level, avoiding gray-zones and maintaining limited rate
adaptation latency.

Returning to the question at the beginning of this
paper: Can we reduce end-to-end delay by a rate-aware
multi-hop solution? The answer is: probably.

Our simulations are not totally real, since NS-2 has a
poor physical channel model, and reduced interference
model. While in the case of IEEE 802.11 a/g multi-
rate radio interface we can suppose to observe a similar
behavior, with other type of interfaces things may go
very differently. Further, by now we did not yet simulate
TCP traffic. Other studies have shown that in mesh
networks, TCP traffic behaves very differently from UDP
traffic. Thus assuming the results shown in this work as
also valid for TCP traffic would be a hazard.

Despite some limitations, our simulations offer an
interesting insight in the behavior of multi-rate radio
interfaces in the context of mesh networks. Moreover,
they show that encapsulation and layer isolation may not
be the best solution in mesh networks, while a cross-
layer solution may give good improvements.
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